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Summary 

In this Masterôs Thesis, the seismic and thermal performance of the Swiss multi-family case 

study building is analysed and assessed to be uncompliant with the current seismic and energy 

code provisions (SIA 269/8: 2017 [1] and Swiss Cantonal Energy Provisions MuKEn [2]). 

More specifically, the minimum seismic compliance factor with respect to a new Swiss building 

is computed to Ŭmin = 0.44 with the software 3Muri (S.T.A. DATA). Concerning the thermal 

transmittance of the structureôs envelope, it proves to be 64-220 % higher than the requirements 

for a renovated residential building [2]. The quantification of the yearly heating demand is 

executed with Autodesk Revit.  

Consequently, synergetic retrofit alternatives are designed to meet the thermal requirements 

and to improve the personal safety of the buildingôs occupants. Particular attention is paid to 

the CO2 emissions of the building before, during and after the synergetic interventions.  

The selected seismic retrofitting options consist of the application of carbon fiber reinforced 

polymer (CFRP) strips or near-surface mounted steel reinforcement on the masonry walls 

which are most prone to fail at low values of inter-storey drift. The energetic interventions act 

on the buildingôs envelope (external walls, windows and roof) and comprise fa­ade and roof 

insulation as well as window replacement.  

The design and selection process of combined retrofits followed in this project is documented 

through a flowchart. Related to the flowchart, a decision-making diagram is developed to opt 

for the most appropriate combined retrofit in terms of overall CO2 emissions, costs, interruption 

time of building occupancy and structural safety. Subsequently, the chosen intervention is 

optimised, leading to a further reduction of greenhouse gas emissions and structural safety 

deficit at unaltered monetary expenses.  

Through this Thesis, a procedure to support professionals in the planning of low-carbon and 

cost-efficient, high-quality, synergetic retrofits is presented. 
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1 

 

1 Introduction 

The following report deals with the management of a combined seismic and energy retrofit of 

a residential building located in Switzerland.  

The structure is assessed in terms of seismic and thermal performance using building models 

in the software 3Muri (S.T.A. DATA) and Autodesk Revit. The realisation of this project 

allowed the development of knowledge in the use of finite elements (FEM) programs and 

software used for the implementation of BIM. Moreover, insight into current seismic and 

thermal retrofit methods was gained through the Thesis. The application of construction 

management practices and tools strengthened skills which are extremely valuable also in 

practice.  

A new approach for decision-making to select the most appropriate synergetic intervention is 

developed in this Thesis. The suggested framework combines multiple criteria, reaching further 

than the usual factors considered in the conventional design of seismic retrofit measures. 

Typically, structural safety and the decisive cost variable are the leading components. In 

addition to those criteria, the innovative decision-making framework includes also CO2 

emissions and carbon savings related to the interventions as well as it takes into account 

occupancy interruption for tenants entailed by the retrofits. Although the conceived decision-

making procedure is based on a specific Swiss building, the followed methodology can be 

utili sed for any other retrofit with just minor adjustments. Furthermore, the presented process 

not only provides a valuable base for objective and standardised decision-making and 

optimisation of retrofit measures but also helps in the evaluation of interventionsô usefulness 

for buildings. Thus, it prevents needless retrofittings already before they are designed in detail. 

The developed procedure is accompanied by a substantial societal impact. In fact, through the 

extensive commissioning of combined retrofit measures, multiple aspects of relevant 

importance are enhanced: societyôs safety and resilience are empowered, as well as the carbon 

footprint is decreased.  

Currently, the design, evaluation and optimisation of multiple retrofit alternatives and the 

exploration of possible synergies are labour-intensive. This process can be significantly 

accelerated by leveraging new technologies. Amongst them, the creation of digital twins of 

buildings, used from the design phase throughout the whole operation until dismantling, would 

reduce the workload of structural and energy engineers. In fact, they ideally can be used directly 

for thermal and (possibly) seismic analysis. Furthermore, visual programming tools [3] and 

generative design [4] can automate the process related to parametric [5], set-based [6] design 

and can thus significantly foster optimisation procedures. 
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1.1 Motivation of the Thesis 

Switzerlandôs building stock is ageing: 50.7 % of all residential buildings were built before 

1970 [7]. Since the renovation of structures would be much more sustainable from an economic 

and ecologic point of view compared to the erection of new buildings, the assessment of 

interventions and performance upgrades of buildings is a relevant subject in the present 

situation and, even more, it will be in the future. 

Furthermore, the seismic performance of Swiss buildings must be improved because the 

majority of structures was built before the introduction of modern code provisions and is 

therefore uncompliant with the actual requirements [8]. The safety level of a structure in 

Switzerland is evaluated according to SIA 269/8: 2017 [1] through an effective compliance 

factor ‌ , which is linked to the personal risk factor of the occupants related to earthquake 

events [9]. In case the calculated compliance factor results lower than the minimum admissible 

value ‌  defined by SIA 269/8: 2017, table 1 [1], the structure must be seismically retrofitted 

[9]. On the other hand, if ‌ ‌ ρ, seismic upgrade is conducted based on 

commensurability criteria [10]. Oftentimes, seismic retrofit of existing structures lacks 

commensurability, as the expected costs for the interventions are disproportionate in relation to 

the achievable seismic risk reduction [8]. As the vast majority of the Swiss building stock has 

an uncompliant seismic performance, the seismic risk is not negligible [10], even though the 

seismicity in Switzerland is considerably lower compared to countries in Southern Europe.  

Moreover, the energy consumption of Swiss buildings must be reduced to meet the goal of the 

energy strategy 2050 [11] and the correlated net-zero CO2 emissions [12]. Currently, around 

60.1 % of the heating is ensured through oil and gas combustion [13], which are non-renewable 

energy sources. In Switzerland, about 1/4 of the total energy use (230 TWh) [14] is employed 

for heating (> 55 TWh) [15]. Additionally, the building stock causes approximately 1/3 of the 

total CO2 emissions in Switzerland [12]. 

A promising solution that acts on the three mentioned aspects is represented by synergetic 

retrofits. According to the approach of sustainable life cycle assessment, an upgrade of seismic 

performance has the potential to limit damages to the possibly executed thermal interventions 

in case of an earthquake event [16], [17]. Combined retrofits may be effective for many 

European countries [18]. In fact, case studies of integrated seismic and energy interventions 

around Europe have been conducted in different seismic zones and climatic conditions: 

upgrades of unreinforced masonry buildings have already been performed and documented in 

Italy, Romania, Greece, Portugal, Spain, Slovakia, Poland, the Netherlands and Switzerland 

[19]. As a result, it was stated that synergetic retrofits are most effective in moderate to high 

seismicity regions and at locations characterised by tendentially cooler climatic conditions [19]. 

Applying those insights to Switzerland, a further, detailed investigation shows promise, despite 

the country lies in a zone of relatively low seismicity [20]. Switzerlandôs climate is rather cool: 

in Zurich, there are averagely more than 3000 heating degree days per year, while in Sion there 

are slightly less than 3000 [21]. According to the Swiss definition, heating degree days are 

computed as the temperature difference of the outside air temperature to the aimed inside air 

temperature of 20° C during the days with a mean daily temperature below 12° C [21]. 
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Combining seismic retrofit with thermal renovation works proved to have the potential for 

reduced resource employment [22] compared to separate interventions since for instance 

construction site installations and construction processes can be shared for both types of 

interventions. Furthermore, the barrier for a thermal retrofit is usually much lower than for 

seismic interventions, as energy interventions are primarily carried out from the exterior of a 

building, while seismic retrofit usually must be executed from the interior, discomforting the 

occupants and stoking fears of high expenditures [18]. 

In the literature, combined seismic and energy interventions on reinforced concrete structures 

and unreinforced masonry buildings are described and analysed [19]. In this Masterôs Thesis a 

four-storey residential building with unreinforced masonry walls assumed to be located in Sion, 

Switzerland, is analysed to explore the potential of synergetic retrofits. The gained knowledge 

is used to develop a tool that can be applied by engineers in any retrofitting project. 

1.2 Description of the Case Study Building 

The case study building analysed in this Masterôs Thesis deals with a residential building 

complex situated in Zurich Affoltern. The general site plan is shown in Figure 1. To induce the 

building to be uncompliant with the seismic code provisions, for the purpose of this Thesis it is 

ideally relocated from Zurich to Sion, where the seismicity is higher. 

 

Figure 1: Site plan (red: case study building) 

The complex was built in the early 1970s and the façades underwent a renovation in 1986. A 

general impression of the building can be gained from Figure 2. 
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Figure 2: Eastern façade (left), western façade with balconies (right) 

 

The structure is characterised by a basement and an underground garage, a ground floor and 

three upper floors (Figure 3). The total height over terrain amounts to 12.17 m.  

 

Figure 3: Transversal section 

 

The layout dimensions are 18.25 m in length and 11.06 m in width. Each overground floor is 

identical and is subdivided into two residential units, each one of them comprising three rooms, 

a kitchen, a restroom and a balcony (Figure 4). 
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Figure 4: Layout of the upper floors  

 

All walls, except the ones on the basement floor, are made of unreinforced masonry. Most 

external masonry walls are 32 cm thick, except for the ones adjacent to an adjoining building, 

which have a thickness of 12 cm. The internal walls are mainly 12 cm thick, while some minor, 

separatory walls only show an 8-10 cm thickness. 

On the western façade, there are many large window openings on every floor, including the 

ground floor, extending from the buildingôs edges over approximately 1/3 of the façade length 

each. In the middle part of the west façade, an unreinforced masonry wall with smaller windows 

is present.  

On the eastern side of the building, narrower windows are distributed over the entire façade 

surface. 
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2 Building Analysis: Is-State 

2.1 Seismic Analysis 

Within the scope of this Thesis, only the in-plane seismic compliance of the buildingôs walls is 

examined. The out-of-plane failure of the walls is evaluated as not critical since the rigid 

reinforced concrete floor slabs are considered as firmly connected to the walls, restraining them 

and preventing overturning. The quality of the masonry walls is assumed to be sufficient to 

avoid cohesion-related issues between the bricks and the mortar in the joints. 

2.1.1 Modelling in 3Muri  

The software 3Muri (version 13.2.0.14) is used for the seismic analysis of the case study 

building. The 3Muri building model was kindly prepared and shared by Safak Arslantürkoglu 

[23]. 

All walls thinner than 12 cm are ignored in the modelling since they are regarded as non-

structural, being disconnected from the ceilings by a 1 cm thick polystyrene layer. The 

reinforced concrete slabs (thickness 18 cm) are modelled as stiff horizontal diaphragms, rigidly 

connected to the structural walls. 

The chosen control node 114 (see Figure 5) is located on the top level of the model (ceiling), 

near the mass centre but not close to the centre of stiffness of the analysed building, according 

to the specifications given by [24]. The choice of the control node is based on the criterion of 

representative displacement behaviour. Namely, the displacements should not be excessively 

sensitive to the choice of the node and lie in the same range as the average displacement of the 

whole floor, since the floors move as rigid bodies. 

2.1.1.1 Geometrical Properties 

Figure 5 shows the simplified ground view inputted in the 3Muri software. As described in 

Section 2.1.1, all non-structural walls are neglected in the model to create a model as simple as 

reasonably possible for the sake of reducing the computational effort. The in-plane load transfer 

on the reinforced concrete floor slabs is subdivided into 60 % in the main X-direction and 40 

% in the Y-direction. All  walls are built in unreinforced masonry and are modelled accordingly.  

 

Figure 5: Ground view of the 3Muri model (left: alignments and control node 114 on level 4 

(red), right: top view of the 3D model) 
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2.1.1.2 Material Properties  

The structural elements of the building are featured according to the standard material 

properties filed in the 3Muri database and material parameters suggested by different 

publications [25], [26], [27] (Table 1).  

Table 1. Material properties used in the 3Muri model 

 
E 

[N/mm2] 

G 

[N/mm2] 

w 

[kN/m 3] 

fm, fcm, fym 

[N/mm2] 

fk, fck, fyk 

[N/mm2] 

fvm0 

[N/mm2] 

fvlim 

[N/mm2] 

ɔ 

[-] 

Masonry 

(clay 

bricks)  

3'8501 9632 13 7 4.90 0.293 2.2 2.00 

Concrete 

C20/25 
29'000 12'083 25 0.28 0.20 - - 1.50 

Steel 

rebars 

B500A 

205'000 85'416 79 5.38 5.00 - - 1.15 

 

2.1.1.3 Actions and Applied Loads 

The seismic actions used for the analysis in 3Muri are determined through SIA 261: 2020 [20]. 

As explained in Section 1.2, to induce the building to be uncompliant with the seismic code 

provisions, it is shifted from its real location in Zurich to Sion, where the seismicity is higher: 

Sion lies in the seismic zone Z3b with a horizontal design ground acceleration ὥ ρȢφ ÍȾÓ 

(SIA 261: 2020 [20], 16.2.1.2). The soil is assumed to be of type E (loose rock, most 

conservative acceleration spectrum for the vibration period of the building, determined through 

modal analysis). Accordingly, the acceleration spectrum parameters given by SIA 261: 2020, 

table 24 [20] are inserted in 3Muri. 

The self-weights of floors and walls are computed automatically by the 3Muri software with 

the assigned geometrical and material properties, as well as the dead and live loads. According 

to SIA 260: 2013, table 2, [28] for the calculation of the applied loads on design level, 30 % of 

the live loads are added to the self-weight of the structural elements and to the dead loads 

(permanent load case, with ‪ πȢσ for residential purposes). 

These loads are applied horizontally in correspondence to the floor levels of the building in 

different load patterns (uniformly distributed forces or static forces matching the first 

eigenmode of the building). Additionally, the forces act in different senses and directions: 

 
1 E = 550fm [25] 
2 G = 0.25E [26] 
3 In accordance with [27] 
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positive or negative sense (+/-) in the principal axes of the structure (X/Y). Furthermore, they 

are characterised by different accidental eccentricities of the resulting force with respect to the 

centre of stiffness (SIA 261:2020, 16.5.2.7 [20]). 

2.1.2 Results: Seismic Compliance 

The seismic compliance is evaluated through the effective compliance factor ‌  [1], 

which indicates the ratio between the seismic capacity of an existing building and the demand 

required for a new structure [9]. For the displacement-based analysis in 3Muri, the compliance 

factor is computed as the ratio of the displacement capacity Ὠ  and the displacement demand 

Ὠ, namely ‌
 
. 

The displacement capacity Ὠ  is reached at the failure of the first structurally relevant element, 

which leads to a partial or total collapse of the structure. Once the collapse point on the pushover 

curve is selected, a new bilinearization according to the N2 method is carried out. 

The displacement demand Ὠ is evaluated by means of the N2 method [29], [30], more precisely 

it is the value of the displacement at the intersection of the bilinearised curve and the pushover 

curve. The aforementioned intersection point is defined by a shear force ὠ

πȢχϽὠ , where ὠ  is the maximal reached shear force in the pushover curve [9].  

The displacement demand Ὠ of a building can also be represented by the capacity spectrum 

method, in which the capacity of the building, derived from pushover analyses, is transformed 

into spectral accelerations and displacements, and plotted together with the demand spectrum 

in an Acceleration-Displacement Response Spectrum diagram [30]. The displacement demand 

Ὠ is quantified as the intersection point between the seismic demand required by the earthquake 

event and the capacity spectrum curves [30]. 

The outputs of 3Muri are cross-checked for plausibility purposes: a comparison of field 

measurements of the vibration period and the period computed by the software (Tx = 0.3 s, 

Ty = 0.2 s) for the vibration modes with the highest mass contribution is done. 

The software generates 24 analyses, corresponding to the different load applications described 

in Section 2.1.1.3. In the following Table 2, the results of the seismic analysis done in 3Muri 

are represented. 
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Table 2: Results of the seismic analysis executed in 3Muri 

Analysis Seismic 

direction 

Seismic 

load 

Eccentricity 

[cm] 

Capacity 

dm [cm] 

Demand 

dt [cm] 

Compliance 

factor Ŭ 

1 X + Uniform 0 1.60 3.50 0.46 

2 X + Static forces 0 2.16 4.13 0.52 

3 X - Uniform 0 1.52 3.46 0.44 

4 X - Static forces 0 2.56 3.97 0.64 

5 Y + Uniform 0 1.28 1.35 0.95 

6 Y + Static forces 0 1.99 1.66 1.20 

7 Y - Uniform 0 1.20 1.20 1.00 

8 Y - Static forces 0 2.73 1.50 1.82 

9 X + Uniform 53.8 1.52 3.41 0.45 

10 X + Uniform -53.8 1.68 3.50 0.48 

11 X + Static forces 53.8 2.32 4.13 0.56 

12 X + Static forces -53.8 2.32 4.11 0.56 

13 X - Uniform 53.8 1.52 3.46 0.44 

14 X - Uniform -53.8 1.60 3.45 0.46 

15 X - Static forces 53.8 2.32 4.09 0.57 

16 X - Static forces -53.8 2.40 4.06 0.59 

17 Y + Uniform 89.6 0.72 1.25 0.58 

18 Y + Uniform -89.6 1.36 1.52 0.89 

19 Y + Static forces 89.6 1.28 1.53 0.84 

20 Y + Static forces -89.6 2.15 1.86 1.16 

21 Y - Uniform 89.6 0.56 1.12 0.50 

22 Y - Uniform -89.6 1.28 1.37 0.93 

23 Y - Static forces 89.6 1.12 1.37 0.82 

24 Y - Static forces -89.6 2.09 1.71 1.22 

 

As it can be noticed from Table 2, the lowest compliance factor is 0.44 (analysis 3 and analysis 

13). Since analysis 3 entails more damaged/failed walls than analysis 13, it is identified as the 

most critical one.   
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2.1.2.1 Commensurability 

The comparison of costs caused by seismic retrofits with the therewith achieved risk reduction 

provides the base to assess commensurability defined by SIA 269/8: 2017 [1]. The lowest 

compliance factor ‌  determined in Section 2.1.2 is used to quantify the personal risk factor 

(PRF) with the aid of Figure 6. Subsequently, the difference in PRF between the initial value 

of ‌ πȢττ and a compliance factor ‌ ρ required for new buildings is calculated.  

Figure 6: Personal risk factor (PRF) as a function of the compliance factor ‌ (SIA 269/8: 2017 

[1] , figure 7) 

The occupancy (PB) of the structure is evaluated through SIA 269/8: 2017 [1], table 2 for a 

residential building: the specific occupancy in persons per room is 0.2-0.6. Therefore, a mean 

value of 0.4 persons/room is chosen. Including bathrooms and kitchens, 10 rooms are present 

per floor, which leads to an occupancy of 4 people/floor and hence 16 people for the entire 

building. Life safety costs (GK) are assumed to be 10 million CHF referring to SIA 269/8: 2017 

[1], 10.3.9. Based on SIA 269/8: 2017 [1], 10.7.2, a discount rate of 2 % over 50 years of 

remaining building service life is embraced. Following the methodology described by SIA 

269/8: 2017 [1], 10.7.2, the proportional safety costs are computed to 16'000 CHF (Table 3). 

Table 3: Parameters for calculation of commensurable costs 

Eff. compliance factor ἵἱἶ [-] 0.44 

PRFM before the seismic retrofit [1/year] 4.2Ā10-6 

PRFM after the seismic retrofit [1/year] 1.0Ā10-6 

Occupancy per room [people] 0.4 

Number of rooms [-] 40 

Life safety costs [CHF] 10'000'000 

Discount rate per year for 50 years and 2 % discount rate [-] 0.032 

Total building occupancy [people] 16 

ȹ PRFM [1/year] 0.0000032 

ȹ RPM [CHF/year] 512 

Commensurable costs in 50 years SICM [CHF] 16'000 

  0.44 

   4.2 10
-6
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2.1.2.2 Embodied CO2 Emissions from Repair Works 

For the estimation of the embodied carbon emissions caused by probable repair works after a 

seismic event, the analysis with the minimum compliance factor ‌ πȢττ (analysis 3, X-

direction, see Table 2) is considered. 

The condition (damaged or failed) of all structural walls is assessed for several displacements 

on the most critical pushover curve. Some of the chosen points correspond to specific degrees 

of structural damage (slight, moderate and extensive damage), defined by linear combinations 

of the yield displacement Ὠ and the displacement of the control node at ultimate strength Ὠ. 

These equations are shown in Table 4.  

Table 4: Assessment points on the pushover curve for different degrees of structural damage 

[31]  

Degrees of structur al damage Displacement 

Slight damage πȢχυ Ὠ 

Moderate damage πȢυὨ  πȢσσὨ 

Extensive damage πȢςυὨ  πȢφχ Ὠ 

 

In addition to the described damage states, further points on the pushover curve are evaluated: 

the condition of the walls at displacements close to slight damage, at the point of maximal shear 

force, at the failure of the first vertical elements and beyond their failure is considered (Figure 

7). 

 

Figure 7: Points of damage assessments on the critical pushover curve computed by 3Muri 

(analysis 3) 

The loss in terms of CO2 emissions caused by an earthquake event is evaluated with the 

Performance Assessment Calculation Tool (PACT) powered by the software SimaPro. The 

PACT is based on FEMA P-58 Seismic Performance Assessment of Buildings, Volume 1 ï 

Methodology [32]. Software version 3.2.1 (March 2018) is used in this project. The emissions 
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are estimated by means of life cycle assessment (LCA) procedures [32]. Amongst other 

functionalities, the tool includes a database of consequence functions related to different 

damage states. These consequence functions provide a quantification of carbon emissions 

(CO2-equivalents) due to the repair or the replacement of damaged or, respectively, failed walls.  

The CO2 emissions are described by a lognormal distribution. For the purpose of this Thesis, 

the median value is taken into account, without considering the statistical dispersion of the data. 

The most appropriate types of structural elements comprised in the PACT database matching 

the masonry walls of the building are shown in Table 5 together with the related CO2 emissions. 

Table 5: Carbon emissions from repair works/replacement of damaged/failed masonry walls 

 
Carbon emissions median 

Wall type damaged failed 

Ordinary reinforced masonry walls with partially 

grouted cells, shear/flexure dominated, 4" to 6" (= 

0.10-0.15 m) thick, up to 12" (=3.66 m) tall 

501 kg CO2/wall 

32.9 kg CO2/m' 

1289 kg CO2/wall 

92.5 kg CO2/m
2 

Ordinary reinforced masonry walls with partially 

grouted cells, shear/flexure dominated, 8" to 12" 

(=0.20-0.30 m) thick, up to 12" (=3.66 m) tall 

562 kg CO2/wall 

36.9 kg CO2/m' 

3124 kg CO2/wall 

224.2 kg CO2/m
2 

 

The walls displayed in the ground view (Figure 8) are subdivided according to the building 

element categories introduced in Table 5 .. 

 

Figure 8: Layout with walls subdivided per thickness (0.10-0.15 m and 0.20-0.30 m) 
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